Технические и научные открытия нового времени. Глава I Изобретения и открытия начала Новых времен

  • 21.07.2020

Время начала современной научной эпохи положили изобретения 16 века. Они развили основу для становления новой науки после .

Универсальные изобретения

Изобретения 16 века начинаются предсказаниями и мыслями универсального человека Леонардо да Винчи (1452 – 1519).

Этот итальянский гений творивший в конце 15 начале 16 века представил много гениальных технических решений как изобретения 16 века.

Конструкторские наброски Леонардо да Винчи на бумаге в виде эскизов: танк, парашют, подъемный кран, винтовой подъемник, самоходная тележка, пулемёт, водолазный костюм, раздвижной мост, водяное колесо и еще более 100 полезных устройств.

Первая вязальная машина

Первая в мире промышленная вязальная машина изобретена в 1589 году английским священником в Ноттингемшире. Легенда утверждает, что его вдохновение произошло от раздражения когда он приходил на свидание с любимой, которая работала вязальщицей чулок. Она была занята вязанием всякий раз, когда он приходит для ухаживания. Разочарованный любовник, Уильям Ли изобретает первую вязальную машину.

Его устройство, состоит от иглы с крючком, которые работают открываясь и закрываясь на последовательных этапах процесса, чтобы имитировать процедуру ручного вязания. Тип иглы по-прежнему является особенностью машин, используемых в современном промышленном вязании.

Королева Англии и Ирландии Элизабет I отказывает в патенте на его вязальную машину на дальновидных основаниях, что это может повредить торговле ручным вязальщикам. История утверждает, что первая вязальная машина была переправлена во Францию по приглашению Генриха IV, а после вернулась в Англию после убийства французского короля в 1610 году.

Рост числа машин в течение следующих двух столетий отражает набирающие обороты темпы промышленной революции. В 1660 году в Британии насчитывалось около 650 вязальных машин, а в 1844 году – около 43 000.

Вязальная машина также обеспечивает ранний пример Луддитской тенденции (противников применения машин), поскольку угроза, предсказанная королевой Элизабет, становится все более очевидной реальностью.

Еще в 1710 году в Спиталфилдсе в Лондоне вязальные машины выбрасывают из окна небольшой фабрики во время конфликта между вязальщиками и владельцами машин.

Микроскоп и телескоп

Принцип работы микроскопа и телескопа идентичен – две линзы, расположенные в линию на правильном фокусном расстоянии, увеличат деталь. Микроскоп и телескоп получает увеличенные изображения путем сфокусирования и дальнейшего восприятия человеческим глазом..

Это влияние обнаружили точильщики объективов. Их открытия были сделаны таким образом в Нидерландах в конце 16-го или начале 17-го века.

Открыл микроскоп голландский очковый мастер Захария Янсен в 1590 году, а телескоп в 1608 Ханс Липерсгей.

После того, как принцип двух линз был признан, это простой вопрос, чтобы установить их в герметичной трубке, чтобы сделать телескоп (от слов, означающих “далеко” и “смотреть на” на греческом языке). Такие игрушки скоро стали продаваться в большом количестве в Амстердаме. Но когда известие об этом изобретении доходит до Галилея в Венеции, в 1609 году, он быстро превращает идею в более серьезные цели.

Микроскоп практическое применение ждал довольно долго, пока он не был поставлен на службу науке итальянским биологом Мальпиги в 1661 году.

Кремневый мушкет

Изобретением 16 века считается кремневый мушкет – ручное огнестрельное дульнозарядное оружие.
С середины 16 века предпринимаются попытки поджечь порох с помощью искры, а не из уже горящей спички.

В кремневом замке искра создается ударом острого кремня наискосок по поверхности слегка шероховатой стали (устройство уже используется в бытовом применении в жестяной коробке – кресало). Так же, как спусковой механизм в спичечном замке сдвигает тлеющую спичку, так и теперь он использует то же действие, чтобы резко ударить по кресалу чтобы поджечь порох.

Европейские страны разрабатывают свои собственные различные варианты кремневого замка. Тот, который в конечном итоге становится стандартом, разработан во Франции примерно в 1610 году – возможно, Марин Ле Буржуа, чье имя находится на флинтлоке в частной коллекции Людовика XIII.

Французское кремневое оружие имеет преимущественное положение в ударнике. К 18 веку это стандартный мушкет распространился по всей Европе и в американских колониях. Испанские армии – единственные, кто сохранил свою разновидность кремня, известного как Микеле, отличающегося конструкцией механизма.

Мы живём в уникальное время! Чтобы облететь пол-Земли, нужно всего полдня, наши сверхпроизводительные смартфоны в 60.000 раз легче первоначальных компьютеров, а сегодняшнее сельскохозяйственное производство и продолжительность жизни - самые высокие за всю историю человечества!

Мы обязаны этими огромными достижениями небольшому количеству великих умов - учёным, изобретателям и ремесленникам, которые придумали и разработали продукты и механизмы, на которых и строится современный мир. Без этих людей и их выдающихся изобретений мы отправлялись бы спать с заходом солнца и застряли бы в тех временах, когда не существовало машин и телефонов.

В этом списке мы расскажем о наиболее важных и решающих последних изобретениях, их истории и значении в развитии человечества. Сможете угадать, о каких именно изобретениях пойдёт речь?

От методов дезинфицирования продуктов и повышения их безопасности до токсичного газа, способствовавшего формированию основы международной торговли, и изобретения, которое привело к сексуальной революции и раскрепостило людей - каждое из этих творений отразилось на жизни людей самым непосредственным образом. Узнайте о 25 выдающихся изобретениях, которые изменили наш мир!

25. Цианид

Хотя цианид и является довольно мрачным способом начать этот список, это химическое вещество сыграло важную роль в истории человечества. В то время как его газообразная форма стала причиной смерти миллионов людей, цианид служит основным фактором для извлечения золота и серебра из руды. А поскольку мировая экономика была привязана к золотому стандарту, цианид служил и продолжает оставаться важным фактором в развитии международной торговли.

24. Самолёт


Ни у кого не возникает сомнений в том, что изобретение "железной птицы" оказало одно из величайших влияний на историю человечества.

Радикально сокращающий время, необходимое для транспортировки людей и грузов, самолёт был изобретён братьями Райт, которые основывались на работе предыдущих изобретателей, таких как Джордж Кейли (George Cayley) и Отто Лилиенталь (Otto Lilienthal).

Их изобретение было охотно принято значительной частью общества, после чего начался "золотой век" авиации.

23. Анестезия


До 1846 года между хирургическими процедурами и мучительными экспериментальными пытками практически не существовало разницы.

Анестетики используются уже на протяжении тысяч лет, хотя их ранние формы представляли собой гораздо упрощённые версии, такие как, например, алкоголь или экстракт мандрагоры.

Изобретение современной анестезии в форме закиси азота ("веселящего газа") и эфира позволило врачам проводить операции, не боясь причинить пациентам боли. (Бонус-факт: говорят, кокаин стал первой эффективной формой местной анестезии после того, как его использовали в глазной хирургии в 1884 году.)

22. Радио


История изобретения радио не так однозначна: кто-то утверждает, что его изобрёл Гульельмо Маркони (Guglielmo Marconi), кто-то настаивает, что это был Никола Тесла (Nikola Tesla). В любом случае, эти два человека опирались на работу многих известных своих предшественников, прежде чем удалось успешно передать информацию посредством радиоволн.

И хотя сегодня это является уже привычным делом, попробуйте представить, чтобы в 1896 году вы кому-то сказали, что можете передать информацию по воздуху. Вас бы приняли за умалишённого или одержимого бесами!

21. Телефон

Телефон стал одним из самых важных изобретений современного мира. Как и в случае с большинством великих изобретений, его изобретатель и люди, сделавшие значимый вклад в его появление, обсуждаются в горячих спорах и дискуссиях до сих пор.

Единственное, что известно наверняка, это то, что первый патент на телефон был выдан патентным ведомством США Александру Грейаму Беллу (Alexander Graham Bell) в 1876 году. Этот патент послужил основой для дальнейшего исследования и развития электронной передачи звука на большие расстояния.

20. "Всемирная паутина, или WWW


Хотя большинство из нас предполагает, что это изобретение является недавним, на самом деле Интернет существовал в своей устаревшей форме ещё в 1969 году, когда американские военные разработали сеть ARPANET (Advanced Research Project Agency Network, сеть Управления перспективного планирования научно-исследовательских работ).

Первое сообщение, которое планировалось передать через Интернет - "log in" ("войти") - вывело систему из строя, поэтому удалось отправить только "lo". Всемирная паутина, какой мы её знаем сегодня, появилась тогда, когда Тим Бернерс-Ли (Tim Berners-Lee) создал сеть гипертекстовых документов, а Университет штата Иллинойс - первый браузер Mosaic.

19. Транзистор


Кажется, нет ничего проще, чем поднять трубку телефона и связаться с кем-нибудь на Бали, в Индии или Исландии, однако ничего не получилось бы без транзистора.

Благодаря этому полупроводниковому триоду, усиливающему электрические сигналы, стало возможным передавать информацию на огромные расстояния. Человек, который был одним из изобретателей транзистора - Уильям Шокли (William Shockley) - основал лабораторию, стоявшую у истоков создания Кремниевой долины.

18. Квантовые часы


Хоть это и может показаться не таким революционным, как многое из перечисленного ранее, но изобретение квантовых (атомных) часов было решающим для развития человечества.

Используя микроволновые сигналы, излучаемые изменяющимися энергетическими уровнями электронов, квантовые часы с их точностью сделали возможным широкий ряд современных изобретений, в том числе GPS, ГЛОНАСС и Интернет.

17. Паровая турбина


Паровая турбина Чарльза Парсонса (Charles Parsons) раздвинула границы технического прогресса человечества, придав мощности индустриальным странам и способствуя тому, чтобы корабли смогли пересекать огромные океаны.

Двигатели работают благодаря вращению вала с помощью сжатого водяного пара, генерирующего электроэнергию - одно из главных отличий паровой турбины от паровой машины, что сделало революцию в промышленности. Только в 1996 году 90% всей вырабатываемой электроэнергии в США были произведены паровыми турбинами.

16. Пластмасса


Несмотря на повсеместное использование в современном обществе, пластмасса является относительно недавним изобретением, появившимся лишь сто с лишним лет назад.

Этот влагостойкий и невероятно податливый материал используется практически в каждой отрасли промышленности - от упаковки продуктов до производства игрушек и даже космических летательных аппаратов.

Хотя большинство современных видов пластмассы производится из нефти, всё чаще звучат призывы к тому, чтобы вернуться к первоначальной версии, которая была частично природной и органической.

15. Телевидение


Телевидение имеет длительную и легендарную историю, которая началась в 1920-х годах и развивается до сих пор, вплоть до появления современных возможностей, таких как DVD-диски и плазменные панели.

Будучи одним из самых популярных потребительских товаров по всему миру (почти 80% домохозяйств имеют хотя бы один телевизор), это изобретение стало совокупным результатом многочисленных предыдущих , благодаря которым появился продукт, ставший главным источником влияния общественного мнения в середине XX века.

14. Нефть


Большинство из нас дважды не задумываются, прежде чем наполнять бензобак автомобиля. Хотя человечество добывает нефть уже в течение тысячелетия, современная газовая и нефтяная промышленность начала своё развитие во второй половине XIX века - после того, как на улицах появились современные фонари.

Оценив огромное количество энергии, которое вырабатывается при сжигании нефти, промышленники кинулись строить скважины для добычи "жидкого золота".

13. Двигатель внутреннего сгорания

Не будь производительной нефти, не было бы и современного двигателя внутреннего сгорания.

Применяемые во многих сферах человеческой деятельности - от автомобилей до сельскохозяйственных комбайнов и экскаваторов - двигатели внутреннего сгорания позволяют заменить людей машинами, способными выполнить непосильную, кропотливую и трудоёмкую работу за считанное время.

Также благодаря этим двигателям человек получил свободу передвижения, поскольку они использовались в первоначальных самоходных средствах передвижения (автомобилях).

12. Железобетон


До появления в середине XIX века железобетона человечество могло безопасно возводить здания только до определённой высоты.

Встраивание стальных арматурных стержней перед заливкой бетона упрочило его, благодаря чему рукотворные сооружения теперь способны вынести гораздо больший вес, позволяя нам строить здания и сооружения ещё больше и выше, чем когда-либо до этого.

11. Пенициллин


Сегодня на нашей планете было бы гораздо меньше людей, если бы не пенициллин.

Официально открытый шотландским учёным Александром Флемингом (Alexander Fleming) в 1928 году, пенициллин стал из самых значимых изобретений (в большей степени, открытий), которое сделало возможным наш современный мир.

Антибиотики стали одними из первых лекарств, способных должным образом справиться со стафилококком, сифилисом и туберкулёзом.

10. Охлаждение


Укрощение огня было, возможно, самым важным открытием человечества на сегодняшний день, однако на это ушло бы не одно тысячелетие, пока мы не укротили холод.

Хотя человечество уже давно использует лёд для охлаждения, его практичность и доступность до некоторых пор была ограничена. В XIX веке человечество значительно продвинулось в своём развитии после того, как учёные изобрели искусственное охлаждение, используя химические элементы, впитывающие тепло.

К началу 1900-х почти каждый мясокомбинат и крупный оптовик использовали искусственное охлаждение для хранения продуктов.

9. Пастеризация


Способствуя спасению жизни многих людей за полвека до открытия пенициллина, Луи Пастер (Louis Pasteur) придумал процесс пастеризации или нагревания продуктов (изначально это было пиво, вино и молочные продукты) до температуры, достаточно высокой для того, чтобы убить большинство бактерий, вызывающих гниение.

В отличие от стерилизации, убивающей все бактерии, пастеризация, сохраняя вкусовые качества продукта, сокращает количество только потенциальных патогенов, снижая его до уровня, при котором они не способны нанести вред здоровью.

8. Солнечная батарея


Подобно тому, как нефть послужила толчком для развития промышленности, изобретение солнечной батареи позволило нам использовать возобновляемый источник энергии гораздо более эффективным образом.

Первая практическая солнечная батарея была разработана в 1954 году специалистами лаборатории компании Bell Telephone на основе кремния. Спустя годы эффективность солнечных батарей резко возросла вместе с их популярностью.

7. Микропроцессор


Если бы не был изобретён микропроцессор, то мы бы никогда так и не узнали про ноутбуки и смартфоны.

Один из наиболее широко известных суперкомпьютеров - ЭНИАК (ENIAC) - был создан в 1946 году и весил 27.215 кг. Инженер-электронщик компании Intel и всемирный герой Тед Хофф (Ted Hoff) разработал первый микропроцессор в 1971 году, поместив функции суперкомпьютера в один маленький чип, тем самым сделав возможным появление портативных компьютеров.

6. Лазер


Акроним от "Light Amplification by Stimulated Emission of Radiation" ("усиление света посредством вынужденного свечения"), лазер был изобретён в 1960 году Теодором Мейманом (Theodore Maiman). Усиленный свет закрепляется посредством пространственной когерентности, что позволяет свету оставаться сфокусированным и сконцентрированным на большие расстояния.

В современном мире лазеры используются почти повсеместно, включая лазерные отрезные станки, сканеры штрихкодов и хирургическое оборудование.

5. Азотофиксация (связывание азота)


Хотя этот термин может показаться слишком научным, азотофиксация на самом деле ответственна за резкое увеличение человеческой популяции на Земле.

Преобразовывая атмосферный азот в аммиак, мы научились производить высокоэффективные удобрения, благодаря которым на тех же участках земли стало возможным увеличение объёмов производства, что значительно улучшило нашу сельскохозяйственную продукцию.

4. Сборочный конвейер


Влияние ставших обыденными изобретений, которое они имели в своё время, вспоминается редко, однако значимость сборочного конвейера переоценить невозможно.

До его изобретения все изделия кропотливо делались вручную. Сборочная линия позволила создать массовое производство одинаковых компонентов, значительно сократив время на изготовление нового продукта.

3. Противозачаточная таблетка


Хотя пилюли и таблетки были одними из основных методов приёма лекарств в течение тысяч лет, изобретение противозачаточной таблетки стало самым революционным из них.

Одобренный для использования в 1960 году и теперь принимаемый более 100 миллионами женщин по всему миру, этот комбинированный оральный контрацептив стал главным толчком к сексуальной революции и изменил диалог о репродуктивной способности, в значительной степени переложив ответственность выбора с мужчин на женщин.

2. Мобильный телефон / смартфон


Скорее всего, прямо сейчас вы читаете или просматриваете этот список со своего смартфона.

Хотя первым широко известным смартфоном стал iPhone, появившись на рынке в 2007 году, за это мы должны благодарить Motorola, его "древнего" предшественника. В 1973 году именно эта компания выпустила первый беспроводной карманный мобильный телефон, который весил 2 килограмма и заряжался по 10 часов. Что ещё хуже, по нему можно было говорить в течение всего 30-ти минут, прежде чем аккумулятор снова требовал зарядки.

1. Электричество


Большинство современных изобретений из этого списка не были бы даже отдалённо возможны, если бы не самое величайшее из них - электричество. Пока кто-то думает, что возглавить этот список должен Интернет или самолёт, оба этих изобретения должны быть благодарны электричеству.

Уильям Гильберт (William Gilbert) и Бенджамин Франклин (Benjamin Franklin) были пионерами, заложившими первоначальную базу, на которой основывались такие великие умы, как Алессандро Вольта (Alessandro Volta), Майкл Фарадей (Michael Faraday) и другие, спровоцировав Вторую промышленную революцию и открыв эру освещения и электроснабжения.

Самая первая швейная машинка появиласьв эпоху промышленных перемен 1850-ыхгодов, и это было чудом, что машинка моглавыполнить такую тяжелую задачку какпрострачивание одежды. Самый первыйпатент на производство швейной машинкибыл выдан в 1790 году Томасу Сейнту. Этотустройство использовало тамбурный шов,который уже был известен в вышивке. Этометод, с помощью которого можносоединить иглу с крючком в основании наединой нити.

  • 3. Вайткомб Л. Джадсон, американский инженер из Чикаго, штатИллинойс, считается человеком, который изобрел молнию.Джадсон запатентовал свою "застежку-молнию 29 августа1893, затем в конце 1893 года он выставил свое новое изобретениена мировой выставке в Чикаго. После он, и его партнер ЛьюисУолкер основали Всеобщую крепежную компанию, котораяпроизводила эти крепежи-молнии. Однако они не смогли статьуспешными бизнесменами на продаже нового устройства.Джадсон умер в 1909 году, до того, как его изобретение сталошироко использоватьсяво всем мире."Молния" была усовершенствована в 1913 году шведско-американским инженером, Гедеоном Сандбаком (бывшимсотрудником Джадсона). Он был на много успешнее впродажесвоего изобретения, которое он назвал "молния 2". Он продавалэти застежки для армии США, которые использовались насолдатской одежде и крепежах оружия во время Первой мировойвойны.
  • 4. Люди впервые начали украшать огнямиелку еще в середине 17 века. Ониприкрепляли маленькие свечи на концыветвей деревьев воском или булавками.Предложение перейти на электрическиеогоньки поступило в 1882 году. ЭдвардДжонсон (он был коллегой Томаса Эдисона)Сделал ряд из 80 малых электрическиехлампочек, и положил их на дерево в Нью-Йорке. И уже через восемь лет гирляндыстали доступны на коммерческой основе.
  • 5. Когда большинство людей думают о паровомдвигателе, они впервую очередь представлюютфотографию паровоза, который был изобретенРичардом Эвансом и Оливером в 1803 году.Но двигатель, использующий пар для выработкиэлектроэнергии на самом деле гораздо старше, чемсам поезд. Паровой двигатель использует принципподогрева воды для выработки электроэнергии.Ранние паровые двигатели использовались ещегреками в 1 веке нашей эры. Они представлялисобой полую сферу с паром, и полые трубки, которыепоставляли пар из котла. Пар бежал из сферы,заставляя ее вращаться и вырабатывать энергию.
  • 6. Археологи еще в раскопках захоронений от 4000 дон.э. обнаружили глиняные горшки,отремонтированые с помощью клея из древеснойсмолы. Мы знаем, что древние греки использоваликлея в столярном деле и создали рецепты клея,который включал в качестве ингредиентов: белки,кровь, кости, молоко, сыр, овощи и зерновыекультуры. Тара и пчелиный воск использовалисьримлянами для приготовления клея. Около 1750 года первый клей и патент на клей былвыпущен в Великобритании. Патентыиспользовались также для создания клея сиспользованием натурального каучука, костейживотных, рыб, крахмал, белка молока и казеина.
  • 7. Аккумулятор - это устройство, которое преобразуетхимическую энергию в электрическую энергию. Каждаябатарея аккумулятора состоит из двух электродов: анода(положительного заряда) и катода (отрицательного заряда).Электричество проходит между этими двумя электродами,так как возникает напряжение разности потенциалов междуними, и накапливается, проходя через вещество подназванием электролит (который может быть либожидкостью, либо твердым веществом). Этоприспособление, состоящее из двух электродов, называетсяячейкой, их также часто называют "вольтовой клеткой".Батареи используются для питания электрическихустройств, или в автомобильных аккумяляторах, длявырабки искры, используемой для старта бензиновогодвигателя.
  • 8. Самый ранний велосипед был подобиемдеревянного скутера, сегодня это приспособлениеназывается "серфером", он был изобретен около 1790года Конт де-Медом во Франции. В 1816 году БаронКарл фон Драйс из Германии, изобрел модель свелосипеда с рулем и кронштейном, закрепленнымк переднему колесу. Свое изобретение он назвал"Драйзайн". Оно состояло из двух колес одинаковогоразмера, а водитель сидел между двумя колесами, нона этой модели не было педалей, и двигаться надобыло вперед с помощью ног, передвигая велосипедвперед. Он выставлял свои велосипеды на показ вПариже 6 апреля, 1818 года.
  • Паровоз - локомотив с самостоятельной паросиловой установкой (паровой котел и паровая машина). Первые паровозы созданы в Вели­кобритании в 1803 (Р. Тревитик) ив 1814 гг. (Дж. Стефенсон). В России первый паровоз поетроен Е.А. и М.Е. Черепановыми (1833-1834).

    Пароход - судно, приводимое в движение паровой машиной или тур­биной (турбинные пароходы называют обычно турбоходами). Первый пароход «Клермонт» построен в 1807 г. в США Р. Фултоном. В России один из первых пароходов «Елизавета» (для рейсов между Санкт-Петер­бургом и Кронштадтом) сооружен в 1815 г.

    Фотография.

    Основоположники фотографии - изобретате­ли Л.-Ж.-М. Дагер (1839) и Ж.-Н. Ньепс (Франция), У.-Г.-Ф. Толбот (1840-1841, Великобритания). Цветные фотоизображения впервые по­мучил Л. Дюкодю Орон (1868-1869, Франция).

    Телеграфная связь, передача на расстояние дискретных (буквенно-ци­фровых) сообщений - телеграмм - с обязательной записью их в пункте приема; осуществляется электрическими сигналами, передаваемыми по проводам и (или) радиосигналами. Основы телеграфной связи были итожены в 1832-1844 гг. работами П.Л. Шиллинга, Б.С. Якоби (Россия), С. Морзе (США).

    Телефонная связь обеспечивает ведение устных переговоров между ибонентами, удаленными друг от друга практически на любое расстояние. Начало телефонной связи было положено в 1876 г. изобретением теле­фонного аппарата А. Г. Беллом (США) и созданием первой телефонной станции (1878, Нью-Хавен, США).

    Автомобиль. Первый автомобиль с паровым двигателем построен Ж. Кюньо (Франция) в 1769-1770 гг., с двигателем внутреннего сгора­ния - Г. Даймлером, К. Бенцем (Германия) в 1885-1886 гг.

    Метрополитен - вид рельсового пассажирского транспорта, пер­спективный в условиях больших городов с насыщенным уличным дви­жением. Первая линия метрополитена (3,6 км) построена в Лондоне (1863). С 1868 г. метрополитен действует в Нью-Йорке. Старейшее ме-гро на европейском континенте - будапештское (1896), венское (1898) и парижское (1900). Впоследствии было построено в Мадриде, Берлине, Ьарселоне, Афинах, Стокгольме, Осло, Токио, Сеуле и других городах.

    В России первая линия метрополитена была введена в строй в Мо­скве в 1935 г.

    Тема: Новейшее время: история продолжается сегодня

    Цель: ознакомить учащихся с открытиями ученых, знамени­тыми людьми XX в., их достижениями.

    Формируемые УУД: познавательные - самостоятельно выде­лять и формулировать познавательные цели, осознанно и про­извольно строить речевые высказывания в устной и письменной форме; коммуникативные - с достаточной полнотой и точно­стью выражать свои мысли в соответствии с задачами и усло­виями коммуникации; регулятивные - формулировать учебные задачи, определять последовательность промежуточных целей с учетом конечного результата, предвосхищать результат, оце­нивать качество и уровень усвоения материала; личностные - устанавливать связи между целью учебной деятельности и ее мотивом.



    Оборудование: электронное приложение к учебнику, лента вре­мени, кроссворд, тест.

    Ход урока

    I. Организационный момент

    II. Актуализация опорных знаний

    Вариант 1

    1. Материк, который называют Новым Светом:

    а) Африка б) Америка в) Антарктида

    2. Кто написал картину «Сикстинская Мадонна»?

    а) Рафаэль Санти

    б) Леонардо да Винчи

    в) Даниель Дефо

    3. Техническое изобретение XIX в.:

    а) паровоз

    б) печатный станок

    в) компьютер

    4. Кто открыл Америку?

    а) Фернан Магеллан

    б) Христофор Колумб

    а) Даниель Дефо

    б) Жюль Берн

    в) Рафаэль Санти

    6. Великий путешественник, который доказал, что Земля име­ет форму шара.

    а) Фаддей Беллинсгаузен

    б) Михаил Лазарев

    в) Фернан Магеллан

    Вариант 2

    1. Колумб хотел открыть морской путь:

    а) в Индию б) в Америку в) в Африку

    2. Что доказал своей экспедицией Фернан Магеллан?

    а) открыл Америку

    б) Земля имеет форму шара

    в) открыл Антарктиду

    3. Какой след в истории оставили Беллинсгаузен и Лазарев?

    а) открыли Австралию

    б) открыли Антарктиду

    в) открыли морской путь в Индию

    а) Рафаэль Санти

    б) Леонардо да Винчи

    в) Даниель Дефо

    Известная картина Рафаэля Санти:

    а) «Мона Лиза»

    б) «Сикстинская Мадонна»

    а) Даниель Дефо

    б) Жюль Верн

    в) Леонардо да Винчи

    Известное произведение Жюля Верна:

    а) «Джоконда»

    б) «Двадцать тысяч лье под водой»



    в) «Робинзон Крузо»

    Какую эпоху историки называют Новым временем?

    a)XVI-XIXee. б)1Х-Хвв. в) XX в.

    Кроссворд

    1. Фамилия французского писателя, автора произведения «Двадцать тысяч лье под водой». (Верн.) 2. Кто открыл Амери­ку? (Колумб.) 3. Русский путешественник, открывший Антарк­тиду. (Лазарев.) 4. Материк, который называют Новым Светом. (Америка.) 5. Имя путешественника Беллинсгаузена. (Фаддей.) 6. Фернан Магеллан совершил кругосветное.... (Путешествие.) 7. Имя итальянского художника, написавшего картину «Джокон­да». (Леонардо.) 8. Фамилия английского писателя, автора произ­ведения «Робинзон Крузо». (Дефо.)

    (Ключевое слово в выделенных клетках: новейшее.)

    3. Работа в парах

    Давайте проверим друг у друга выполнение заданий 1, 3 нас. 9-10.

    (Ученики проверяют, правильно ли наклеены рисунки.)

    Какие слова вы написали в задании 6? (Новое время, великие открытия, технические изобретения, прогресс и т. д.)


    Введение

    Глава 1. Развитие науки

    1 Научная революция. Эпоха Возрождения (кон. XV - 1540 г.)

    2 Вторая фаза научной революции (1540-1650)

    3 Третья фаза научной революции (2-я пол. XVII в)

    4 Наука в первой половине XVIII века

    Глава 2. Развитие техники. Промышленная революция

    1 Техника XVI-XVIII вв. до Промышленной революции

    2 Промышленный переворот

    Глава 3. Влияние развития науки и техники на общество

    1 Влияние науки

    2 Влияние техники

    Заключение

    Список литературы


    Введение

    научный новое время техника промышленный

    Раннее новое время рассматривается в истории как период в истории человечества (кон. XV - кон. XVIII вв.), связанный с зарождением капитализма в недрах феодального строя. Для этой эпохи характерны великие научные и географические открытия, значительные технические изобретения, бурный рост производства и торговли, глобальные изменения в духовной жизни людей и в социальной структуре общества.

    Эти изменения вылились в совершенно новое историческое явление со своими особенностями - промышленный переворот .

    Промышленный переворот, как переход от мануфактурной к машинной, фабричной, стадии производства, явился подлинной революцией, которая происходит в истории каждой страны только однажды. Характерной чертой промышленной революции явился стремительный рост производительных сил на базе крупной машинной индустрии и утверждение капитализма в качестве господствующей мировой системы хозяйства.

    Раньше других стран промышленный переворот и связанные с ним социально-экономические изменения начались в Англии - в 60-е гг. XVIII в. Переворот произошел не только в технологической сфере: в Англии образовалась структура буржуазного индустриального общества.

    В целом по данной теме создано огромное количество трудов. Собран уже обобщенный материал для разработки темы. В своих трудах Развитие Европы в раннее новое время, научный прогресс, процесс влияния развития науки и техники на общество изучали или затрагивали данный период в работе такие исследователи как Гельмут Кенигсбергер, Поль Манту, Джон Бернал. В своих работах авторы обращают внимание на причины развития науки, влияние эпохи Возрождения на научно-технический прогресс, рассматривают понятие и суть промышленного переворота. И как следствие влияние научно-технического развития на человеческое общество. Итог этих работ выражен в совершенно справедливых словах: В 1789 г. Европа начинала выглядеть современной. На Западе личная зависимость крестьян была практически ликвидирована, а на Востоке все правительства (за исключением лишь России) по крайней мере начали, пусть и весьма осторожно, заниматься этой проблемой. Рабство и работорговля все еще процветали, но уже перестали считаться нормальным и естественным и все больше становились объектами критики. Благополучие или даже просто жизнь, обеспеченная питанием, одеждой и жильем, пока еще была привилегией меньшинства; однако число обеспеченных людей росло. Гельмут Кенигсбергер изучил и охватил весь период раннего нового времени XVI-XVIII вв. Джон Бернал описывал влияние науки на общество. Его работа представляет собой очерк развития науки в Новое время, опись основных научных событий данного периода.

    Исходя из степени разработанности темы, цель данной работы заключается в том, чтобы изучить развитие науки и техники в раннее Новое время, изучить основные предпосылки и историю промышленного переворота посредством анализа теоретических работ по этой теме.

    Предметом изучения данной работы является наука и техника раннего нового времени и промышленный переворот, а объектом развитие науки и техники в раннее Новое время в Европе и история промышленного переворота.

    Вышеназванная цель реализуется посредством поэтапного решения ряда взаимосвязанных исследовательских задач. К ним относятся:

    Изучить развитие техники;

    Проследить динамику развития науки за весь период раннего Нового времени;

    Определить предпосылки промышленного переворота;

    Определить влияние развития науки и техники на общество.


    Глава 1. Развитие науки


    .1 Научная революция. Эпоха Возрождения (кон. XV - 1540 г.)


    Эпоха Возрождения изобилует важными описательными трудами, охватывавшими все области человеческого опыта. Широта интересов того времени проявляется в достижениях человека, который сам был олицетворением своего века, - великого универсала-инженера, ученого и художника Леонардо да Винчи. Двумя величайшими победами этой эпохи было понятное изложение системы небес, в центре которой находилось Солнце, - системы Коперника в его труде «Об обращении небесных сфер» и первая подробная анатомия человеческого тела, показанная в сочинении Везалия; работы опубликованы одновременно в 1543 году . В них впервые было показано, как выглядят небесные сферы или человеческое тело для того, кто имеет достаточно пытливый взор, чтобы видеть самому, а не смотреть сквозь очки античного авторитета. Они были выдвинуты и с самого начала приняты новым светским обществом, также учившимся наблюдать и экспериментировать. Только позднее, когда начали выявляться политические последствия нового взгляда, власти испугались и попытались, хотя уже было поздно, помешать его распространению.

    За этими важнейшими трудами последовали многие другие, касающиеся различных областей созданного и естественного, которыми пренебрегали древние. Среди них «Пиротехника» Бирингуччо (1480-1539), изданная в 1540 г. , в которой описываются металлическая, стекольная и химическая промышленности, и «О природе ископаемых» Георга Бауэра или Агриколы (1490-1555), вероятно, наилучший по тому времени трактат по технике, ибо в нем описывались не только минералы и металлы, но также и практика и даже экономика горнорудного дела. Позднее в таких книгах, как труды Геснера (1516-1565), Ронделэ (1507-1566) и Белона (1517-1564), появилось много великолепных описаний животных и растений как Старого, так и Нового Света. К ним можно также добавить бесчисленные отчеты об исследованиях новых стран, в том числе «Письма» Америго Веспуччи, появившиеся в 1504 году, что привело, без достаточных на то оснований, к присвоению вновь открытому континенту его имени, и первый отчет Пигафетты о кругосветном путешествии Магеллана в 1519-1522 годах.

    Первоначальная фаза научной революции была скорее фазой описаний и критики, чем конструктивной мысли. Такая мысль должна была прийти позже. Сначала идет исследование широких горизонтов и опровергаются старые авторитеты. Совершенствование мастерства и технических приемов обусловило позитивные стимулы и материальные средства для прогресса науки.

    Революция Коперника. Не случайно, что именно в области астрономии, столь тесно связанной с географией, произошел первый и в некоторых отношениях важнейший переворот. Переворот этот был вызван ясным и подробным описанием Коперником вращения Земли вокруг своей оси и движения ее вокруг неподвижного Солнца. Описательная астрономия была в то время единственной наукой, накопившей достаточно наблюдений и развившей достаточно точные математические методы, позволяющие ясно излагать гипотезы и проверять их с помощью цифровых вычислений. Все это само по себе могло бы и не привести еще к сколько-нибудь радикальному прогрессу.

    Практическим стимулом послужила осознанная церковью необходимость реформировать календарь. Старый юлианский календарь, установленный еще Юлием Цезарем, к тому моменту уже явно устарел. Для его исправления требовались точные вычисления истинной продолжительности года. До этих пор при расчете движения небесных тел и, соответственно, длительности года пользовались вычислениями греческого математика Птолемея (II в. н. э.), которые подразумевали, что небесные тела вращаются вокруг неподвижной Земли. Чтобы получить точное представление, т. е. соответствие предполагаемого движения планет реальным наблюдениям, Птолемей разработал геометрическую схему концентрических кругов и эпициклов, окружностей на окружностях. По мере того как в течение позднего Средневековья наблюдения проводились все более тщательно, приходилось добавлять новые эпициклы; схема становилась пугающе сложной, но при этом все же не обеспечивала нужной точности. Коперник решительно разрубил этот проблемный узел, предложив новую модель мироздания с Солнцем в центре и Землей, которая вращается вокруг Солнца в годовом цикле и вокруг своей оси - в дневном.

    Коперник внес в астрономию новый критический дух, правильную оценку эстетической формы и вдохновение заново отредактированных текстов античных авторов, которые могли быть использованы и для сопоставления взглядов древних авторитетов.

    Создание гелиоцентрической системы мира явилось результатом долголетнего труда Коперника. Он начал с попыток усовершенствовать геоцентрическую систему мира, изложенную в «Альмагесте» Птолемея. Многочисленные работы в этом направлении до Коперника сводились или к более точному определению элементов тех деферентов и эпициклов, посредством которых Птолемей представил движения небесных тел, или к добавлению новых эпициклов. Коперник, поняв зависимость между видимыми движениями планет и Солнца, хорошо известную ещё Птолемею, на этой основе построил гелиоцентрическую систему мира. Благодаря ей правильное объяснение получил ряд непонятных с точки зрения геоцентрической системы закономерностей движения планет (следует заметить, что впервые идею о вращении Земли вокруг Солнца высказал около 280 г. до н.э. греческий астроном Аристарх Самосский). Таблицы, составленные Коперником, много точнее таблиц Птолемея, что имело большое значение для быстро развивавшегося тогда мореплавания. Широкое их использование способствовало распространению гелиоцентрической системы мира.

    Результаты труда были обобщены Коперником в сочинении «Об обращениях небесных сфер», опубликованном в 1543 г., незадолго до его смерти. Коперник развил новые философские идеи лишь в той мере, в какой это было необходимо для очередных практических нужд астрономии. Он сохранил представление о конечной Вселенной, ограниченной сферой неподвижных звёзд, хотя в этом уже не было необходимости (существование и конечные размеры сферы неподвижных звёзд были лишь неизбежным следствием представления о неподвижности Земли). Коперник стремился прежде всего к тому, чтобы его сочинение было столь же полным руководством к решению всех астрономических задач, каким было «Великое математическое построение» Птолемея. Поэтому он сосредоточил внимание на усовершенствовании математических теорий Птолемея.

    Значение гелиоцентрической системы состояло в том, что Земля, считавшаяся раньше центром мира, низводилась на положение одной из планет. Возникла новая идея - о единстве мира, о том, что «небо» и «земля» подчиняются одним и тем же законам.


    .2 Вторая фаза научной революции (1540-1650)


    Этот период в исторической науке не получил соответствующего наименования. В области науки этот период ознаменовался первым значительным торжеством нового опытного, экспериментального подхода к явлениям. Непосредственным началом этого периода следует считать впервые сформулированное Коперником разъяснение солнечной системы, концом же его - утверждение этой системы, невзирая на осуждение церкви, благодаря трудам Галилея. К этому же периоду относится данное Гильбертом в 1600 году определение Земли как магнита и открытие в 1628 году Гарвеем кровообращения. В это же время были впервые применены два величайших изобретения, расширивших возможности наблюдения природы, - телескоп и микроскоп.

    С экономически точки зрения в это время преимущества получили такие страны как,- сначала Голландия, а затем и Англия. Это было обусловлено развитием новых морских путей и упадком старых, в которых важную роль играла континентальная Европа, а именно Германские земли и Италия. Именно Голландия и Англия, также сюда можно отнести и северную Францию стали объектом притяжения ремесленников из Италии, которые принесли с собой достижения эпохи Возрождения. Движущей силой развития была богатевшая буржуазия, захватившая власть в Голландии и Англии.

    Основными вопросами эпохи были вопросы связанные с астрономией, решение которых могло использоваться в мореплавании. Важнейшим объектом изучения стал такой сложный механизм как человеческое тело.

    Обоснование солнечной системы. Теории Коперника в ее первоначальном виде недоставало точного описания орбит планет - что еще предстояло сделать астрономам,- а также убедительных аргументов для объяснения невоспринимаемости движения Земли - задача, которая предполагала создание новой науки - динамики.

    Первым, кто по-настоящему оценил значение работы Коперника, был итальянский учёный Джордано Бруно, заплативший жизнью за свою отважную борьбу против церковного схоластического мракобесия, и в частности за защиту, гелиоцентрической системы, его сожгли в Риме в 1600 г. Бруно заставил людей думать и спорить о теории Коперника. На каждого католика, напуганного его казнью, приходилось, по видимому, столько же протестантов, вдохновленных его подвигом.

    Учение Коперника получило новое математическое подтверждение в трудах немецкого астронома Иоганна Кеплера. Имея в своем распоряжении материалы наблюдений последнего, - проведя множество новых исследований, Кеплер блестяще развил «коперникову астрономию». Важнейшими аргументами в пользу гелиоцентрической системы явились знаменитые законы Кеплера. Солнце, по Кеплеру, является источником силы, движущей планеты.

    В XVI в. появляется телескоп, что послужило решающим фактором в пользу признания нового взгляда на строение неба. Появилось средство, позволяющее каждому желающему взглянуть на Солнце, Луну и другие планеты. Появилось средство тщательного исследования небесных тел.

    Телескопу было суждено стать одним из самых величайших приборов этого периода. И одним из первых учёных, использовавших новое устройство, был Галилео Галилей. В 1610-1611 гг. была опубликована его работа «Звездный вестник», где он сообщал о своих первых астрономических открытиях, сделанных при помощи сконструированного им телескопа. Характерно, что этот труд и последующие работы Галилея, где содержалось множество новых открытий (гор и кратеров на поверхности Луны, спутников Юпитера, фаз Венеры, солнечных пятен, вращения Солнца и т. д.), получили признание даже в церковных кругах, которые до поры до времени терпели приверженность ученого к гелиоцентрической системе. Папа Урбан VIII считался другом Галилея. Однако доминиканцы и иезуиты оказались сильнее непрочного папского покровительства. По их доносу в 1633 г. Галилей был предан суду инквизиции в Риме и чуть было не разделил участи Бруно. Лишь ценой отречения от своих взглядов он спас жизнь. Учение о движении Земли было объявлено ересью.

    Галилей своей деятельностью обеспечил торжество гелиоцентрической системы. Его открытия стали составной частью физики и послужили основанию научного естествознания.

    Физика и Математика. Не смотря на наблюдательные доказательства гелиоцентрической системы возникли новые вопросы, а как такая система могла существовать, при этом нужно было устранить все возражения выдвинутые против неё. Следовало разъяснить как Земля движется вокруг Солнца без ураганного ветра и почему предметы подброшенные вверх не остаются позади. Все эти вопросы требовали серьёзного изучения свободного движения тел. Начинаются исследования траекторий падения ядер, развивается теория импульса, однако всему этому пока ещё не доставало логического и математического обоснования.

    Галилео Галилея можно считать родоначальником экспериментальной физики. Галилео начал подвергать сомнению все общепринятые воззрения, обратившись для этого к помощи нового метода-метода эксперимента. Бросал ли он фактически тяжести с верхушки Пизанской башни или нет, неважно; мы знаем, что для проведения точных измерений падения тел он использовал в своих опытах как маятник, так и наклонную плоскость. Галилей создал определённые образцы методов физики, которые использовались и в последующие столетия.

    Достижения Галилея были бы не возможны, если бы он не владел бы математическими знаниями. В этой области значительно проявил себя французский математик Франсуа Виет (1540-1603), который практически является основателем элементарной алгебры. Он первый, кто ввёл символическое (буквенное) обозначение как известных величин, так и неизвестных не только в алгебре, но и в тригонометрии. Применение алгебраических методов значительно облегчало расчёты. В 1585 г Фламандским математиком Симоном Стевином были введены дроби, а Джон Непер в 1614 г ввёл логарифмы. Сокращение и упрощение вычислений привело к увеличению количества астрономов и физиков.

    Развитие математики главным образом привело к упрощению расчётов, что в свою очередь позволило выполнять больше действий и точнее, из чего вылилось развитие физики и математики.

    Анатомия. Ещё в 1543 году фламандский учёный Андреас Везалий выпустил свой известный труд «О строении человеческого тела». Везалий опроверг множество средневековых схоластических представлений об устройстве человеческого организма, однако в своих трудах он не ответил на важный вопрос, связанный с кровообращением.

    Разрешить этот вопрос предстояло англичанину Уильяму Гарвею (1578-1657). Он получил образование в Падуе, что дало ему возможность сочетать итальянские традиции в области анатомии с новым увлечением экспериментальной наукой, начинавшим пробивать себе путь в Англии. Гарвей искал объяснение движения крови в теле на основе законов механики. Его труд «Анатомическое исследование о движении сердца и крови животных», опубликованный в 1628 году, представляет собой изложение нового рода анатомии и физиологии. Открытие произвело настоящую революцию в физиологии сродни с той, что произвёл Коперник в астрономии. Гарвей рассматривал тело как гидравлическую машину где нет места духам. Он писал: «Следовательно, сердце есть основа жизни и солнце микрокосма, подобно тому, как Солнце можно назвать сердцем мира. В зависимости от деятельности сердца кровь двигается, оживляется, противостоит гниению и сгущению. Питая, согревая и приводя в движение, кровь - этот божественный очаг - обслуживает все тело; она является фундаментом жизни и производителем всего».

    Таким образом Гарвей ставил сердце на центральное место в организме, как Солнце во вселенной. Появилась идея организма, как машины. Однако в то время это открытие ещё не повлияло на медицину, но открытие стало основой для «рациональной физиологии», и что важно, появилось представление об организме как о совокупности органов, связанных и питаемых кровеносными сосудами.


    .3 Третья фаза научной революции (2-я пол. XVII в)


    Это период, когда наука «созревает» и укореняется в наиболее развитых странах, таких как Франция и Англия. Это обеспечивалось наступившей в них относительной стабильностью. В Англии утвердившаяся после революции буржуазия щедро поощряла развитие науки. Основными вопросами выступали такие направления, как гидравлика, артиллерийское дело и мореплавание. В особенности именно мореплавание толкало развитие науки.

    Вторая половина XVII столетия - это время создания Лондонского королевского научного общества (1662) и Французской королевской академии (1666). Со временем учёные Англии и Франции в процессе своей работы осознали необходимость таких учреждений, поскольку их деятельность могла приносить большую практическую пользу и что для проведения её они должны иметь больше средств и получить более полное и широкое признание.

    Следует отметить что сформировавшейся общества, их учреждения привели к тому, что наука стала институтом со своими отличительными признаками. Новый институт стал обладать достаточным авторитетом, чтобы оградить от себя от лженауки, показать широкой общественности, мало понимающей, где наука, а где шарлатанство.

    В это время наука развивается во многих направлениях, исследуются новые явления. В их числе были оптика и теория света, которые благодаря телескопу были тесно связаны с астрономией и благодаря микроскопу - с биологией. Кроме того - пневматика, где технические приемы, разработанные в связи с открытием пустоты, должны были иметь в конечном смете такое громадное промышленное значение. Вопрос о пустоте также являлся центром философской полемики, восходившей еще к древним грекам. Новые, полученные экспериментальным путем, доказательства ее существования помогли возродить атомистическую гипотезу Демокрита. Возрожденная атомистическая, или корпускулярная, теория оказалась первым ключом к рациональным, количественным объяснениям в области химии, до тех пор остававшейся областью одних только технических рецептов и мифических объяснений. Химия в свою очередь была связана с началами физиологии. Все такие вопросы, как природа крови, функции легких, деятельность нервов и мускулов, а также процессы пищеварения, были предметом обсуждения и экспериментирования в духе новой материалистической философии.

    Новая картина мира. Ко второй половине XVII в наука стала развиваться во всех сферах, новому поколению учёных уже не нужно было сдерживать натиск старого, тех кто отстаивал картину мира, выдвинутой ещё Аристотелем. Согласно ему, Земля представляет собой сферу в центре Вселенной, расположенную ниже Луны, т. е. подлунную сферу несовершенных материальных тел. Выше находятся концентрические небесные сферы Луны, Солнца и звезд, состоящие из более чистой, неземной материи; они вращаются вокруг Земли. Каждая часть мироздания имеет назначенное ей место, стремится занять его и обрести покой. Это была логически согласованная система устройства Вселенной и действующих в нем законов физики, и, казалось, она соответствовала обычным представлениям и здравому смыслу. Средневековое общество приняло её, поскольку эта теория подходила под Библию. Эта картина была разрушена Коперником и Галилеем. Их теории признавались новой наукой почти единодушно.

    Появляется большое количество новых теорий, среди которых корпускулярная теория Гассенди (1592-1655). Он взял за основу теорию атомов, созданную ещё Эпикуром. Согласно его гипотезе атомы представляли собой частицы, обладающие массой и инерцией, двигались они в пустоте, существование которой доказывали последователи Галилея.

    Активно начинает исследоваться природа света; активно изучается оптика, появляется теория, что свет - это поток частиц, в этой области активно работали Ньютон, исследуя оптические явления. Он пришёл к выводу, что свет имеет волновую природу и что каждый цвет - это поток свет различной длины волны. Голландский учёный Гюйгенс развил волновую теорию света математически.

    Развитие оптики привело к появлению микроскопа. Точная дата его появления неизвестна. Первым, кто создал микроскоп, создающий увеличение в 300 раз был Антон Ван Левенгук (1632-1723), был открыт мир бесконечно малого. С помощью нового устройства были исследованы насекомые, открыты бактерии, была доказана теория Гарвея, получившая полное подтверждение.

    В 1644 году итальянский учёный Торричелли открыл атмосферное давление и создал барометр, это была трубка, заполненная ртутью. В результате опытов было замечено, что пространство над столбиком ртути было настоящей пустотой. Таким образом было отвергнуто предположение, что пустоты быть не может. А позже Паскаль подтвердил эту теорию, поднявшись с барометром на гору и запечатлив изменение давления. Открытие пустоты сыграет огромную роль в будущем, послужив созданию парового двигателя.

    Несмотря на общий прогресс науки, главным успехом XVII столетия было открытие всемирного тяготения Исааком Ньютоном (1642-1727). Главный его труд «Математические начала натуральной философии» был опубликован в 1687 г. , в котором он обосновал и изложил свою теорию. В своём труде «Начала», которых Н. обобщил результаты, полученные его предшественниками (Г. Галилей, И. Кеплер, Р. Декарт, Х. Гюйгенс, Дж. Борелли, Гук, Э. Галлей и др.), и свои собственные исследования и впервые создал единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Ньютон нашёл объяснение открытиям Коперника и Галилея, сделал то что пытались сделать до него - объяснить физически движение планет вокруг Солнца и что удерживает их на орбитах.

    Таким образом открытия Ньютона служат венцом научной революции . Выдвинутые им законы являются величайшими открытиями в области физики и естествознания, двигавшими науку ещё более 200 лет. В конце XVII века завершилась научная революция, были достигнуты успехи в физике, математике, биологии. Развитие химии ещё не началось, но для этого возникали все предпосылки. И что самое важное, наука сформировалась как институт; была разрушена старая средневековая картина мира и сформирована новая.


    .4 Наука в первой половине XVIII века


    Это период относительного затишья в науке. Это время освоения того научного прогресса, что был в XVII столетии. Появилась новая философия, перед которой стояла задача доказать существование альтернативы классическо-религиозной картины мира. Была утверждена Ньютоновская модель мира.

    В эту эпоху начинается распространение науки далеко за пределы Англии, Франции и Голландии. По образу французской и английской академий были созданы академии наук в Германских странах и Австрии. Были созданы свои академии в Швеции и России (1724). Создание мощной научной базы в России было суждено Михаилу Ломоносову (1711-1765).

    Наука нашла своё место. Не смотря на относительное затишье продолжала развиваться, появляется интерес к электричеству, однако эта область продолжает восприниматься нечто второстепенное.

    Благодаря Ньютону математическая астрономия прочно утвердилась как главенствующая отрасль науки, и на протяжении всего XVIII века развитие ее не приостанавливалось ни на минуту.

    Развитие науки XVI-XVIII вв. сыграло огромную роль в истории человечества. Новая экспериментальная наука позволила взглянуть на мир другими глазами. Наука превратилась в институт, стала всеобъемлюще влиять на все сферы экономики и общества. Её развитие тесно переплетено с развитием техники, которая в эту эпоху достигла новых высот своего развития.

    Глава 2. Развитие техники. Промышленная революция


    .1 Техника XVI-XVIII вв. до Промышленной революции


    Техника в период XVI-XVII вв. прошла гигантский этап своего развития. В эту эпоху начинает господствовать новая форма производства, зародившаяся ещё в XIV-XVI вв. в Италии - мануфактура. Мануфактура - (от лат. manus - рука и factura - изготовление), капиталистическое предприятие, основанное на разделении труда и ручной ремесленной технике.

    Впервые мануфактуры возникают в Италии еще в XIV в. В этой стране раньше всего сложились условия, способствовавшие зарождению капитализма в промышленности. В конце XV и начале XVI в. мануфактуры стали создаваться в Германии, Англии, Нидерландах, Франции. В XVI-XVIII вв. суконные, шелковые, оружейные, стекольные и др. мануфактуры распространились во всех европейских странах.

    Ещё с эпохи средневековья было унаследовано большое количество технических средств, которые использовались и в XVI веке. Наряду с ручными орудиями все более широко применялись мускульные приводы, а также устройства, использующие силу животных (особенно лошадей), силу ветра (с IX-X вв.) и силу воды. В XIII-XIV вв. возникает чугунолитейное производство. В XV в. появляются доменные печи, дающие чугун для дальнейшего передела на железо. Все это были зачатки новых технических средств, характерных в дальнейшем для мануфактурной эпохи.

    Прогрессивной чертой мануфактурного периода был резкий рост изобретательства по сравнению со средневековьем. Количество проектов и опытов росло от столетия к столетию.

    Среди изобретателей встречались представители самых различных слоев населения. Однако главную роль в создании новых изобретений играли работники производства: гидротехники, ткачи, кузнецы, часовых дел мастера, горные мастера, строители военных сооружений.

    Во всех областях усложняющегося материального производства и военного дела - в судостроении, сооружении зданий, артиллерии, фортификации возникает потребность в более точных расчетах, в теоретическом осмыслении, в обобщении технического опыта. Происходит все большее сближение техники с наукой. Едва ли не все выдающиеся ученые того времени, работавшие в области естественных и точных наук, - Г. Галилей, X. Гюйгенс, И. Ньютон, Г. Лейбниц,- успешно занимались изобретательством.

    В XVI в. начались попытки юридической защиты интересов новаторов техники путем выдачи им привилегий на изобретения.

    Некоторые общие правила таких привилегий стали разрабатываться с XV в. в Венеции, а с XVI - в Германии и Англии. Но патентное законодательство впервые оформилось в Англии в 1624 г. В других странах соответствующие законы были приняты позже.

    Установление все более тесных связей между наукой и техническим «мастерством» побудило еще на рубеже XV и XVI вв. Леонардо да Винчи доказывать необходимость связи теории с практикой. Он решительно отвергал «заблуждения тех, кто пользуется практикой без науки», сравнивая таких людей с кормчими, «ступающими на корабль без руля и компаса». С другой стороны, Леонардо был противником чистого теоретизирования. «Тебе необходимо написать о теории, а потом о практике», - указывал он. «Когда будешь излагать науку о движении воды, не забудь под каждым положением приводить его практические применения, чтобы Твоя наука не была бесполезна».

    Двигатели. Использование силы воды. С эпохи средневековья было унаследовано использование устройств, использующих силу ветра и воды - водяные и ветряные мельницы. Поскольку устройства, использующие силу ветра и воды, раньше всего стали применяться в мукомольном деле, слово «мельница» во всех европейских языках приобрело потом более широкое значение. Так стали называться разнообразные установки с ветряными или водяными двигателями (иногда и с мускульными или конными приводами), а также и предприятия, где применялось такое оборудование.

    Водяные двигатели получили в мануфактурный период распространение во всех отраслях производства - при переработке сельскохозяйственных продуктов (в мукомольном деле, на крупорушках, маслобойках и т. д.), в текстильной промышленности (на шелкокрутильнях, сукновалках), а также на лесопилках, при производстве бумаги, пороха и т. д.

    Обычно мощность водяного колеса не превышала нескольких десятков киловатт, число оборотов водяного колеса было так же незначительно, примерно от 1 до 10 об/мин. В зависимости от конструкции водяного колеса коэффициент полезного действия его колебался в пределах от 0,3 до 0,75.

    Особенно важное значение водяные двигатели приобрели в горном деле и металлургии, где их использовали для откачки воды из шахт, для промывки руд и их дробления, для приведения в движение воздуходувных мехов, обслуживающих доменные печи и различные горны, для обслуживания молотов и сверлильных машин и т. д.

    Возможности всех видов двигателей, применявшихся в рассматриваемый период, были ограничены. Мысль изобретателей того времени работала над тем, чтобы отыскать двигатель, универсальный по своему применению, не зависящий от места его работы (например, от наличия водных потоков).

    Вначале изобретатели пошли по пути несбыточных поисков вечного двигателя, т. е. такой машины, которая, не получая извне никакой энергии, сама по себе способна действовать неограниченное время (пока не испортятся ее детали) и производить полезную работу. Мечта о создании вечного двигателя родилась еще в XII в. В XVI-XVIII период было выдвинуто множество проектов такого двигателя.

    В 1775 г. Парижская академия наук приняла решение не рассматривать любые проекты этого рода, как противоречащие здравому смыслу. Впрочем, несмотря на все доказательства невозможности создания вечного двигателя, эта мечта очень долго не оставляла изобретателей.

    Горное дело и металлургия. Производство чугуна, железа и стали.

    В этот период гидравлические двигатели наибольшее применение получили в горной промышленности, где они использовались для привода подъемных, водоотливных, вентиляционных установок, дробильных и транспортных механизмов.

    Развитие производительных сил настоятельно требовало увеличения добычи железной руды, каменного угля и других полезных ископаемых. Расширение торговых связей в мануфактурный период увеличивало спрос на драгоценные металлы - золото и серебро, добыча которых в связи с этим значительно возросла. Большой производственный опыт в области горного дела, накопленный к началу XVI в. в странах Западной Европы, был впервые обобщен выдающимся немецким ученым Агриколой (1494-1555) в труде «О горном деле и металлургии» (1550 г.).

    Если в период ремесленного производства преобладало получение железа непосредственно из железной руды сыродутным способом, то для мануфактурной ступени характерно расчленение металлургического производства на выплавку чугуна (доменный процесс), чугунолитейное дело (отливку готовых изделий из чугуна), передел чугуна на железо и дальнейшую обработку железа. При этом в ряде местностей сохранялся и старый сыродутный способ получения железа. В XV-XVIII вв. во всех европейских странах наблюдается рост размеров доменных печей и использование более разнообразных, чем прежде, сортов железных руд.

    Руда перед плавкой подвергалась обработке, именуемой «обогащением». Она сортировалась, дробилась и промывалась для удаления пустой породы.

    На континенте Европы домны, как правило, работали на древесном топливе (с добавкой особых веществ, именуемых флюсами).

    Наиболее крупные германские домны в середине XVIII в. обычно имели 7-7,5 м в высоту, французские и шведские - 7,5-8 м. Размеры уральских древесноугольных домен были более значительны. Во второй половине XVIII в. их высота достигала от 10,5 до 13 м, а поперечник - до 4 м. Однако будущее было за печами, в которых использовалось минеральное топливо.

    На железоделательных заводах (или в соответствующих цехах металлургических предприятий, объединявших выплавку чугуна и выделку железа) в одном или последовательно в двух кричных горнах чугун переделывался на железо. Получаемая при этом крица - губчатый ком раскаленного железа, пропитанный шлаками, - извлекалась из горна и подвергалась обжиму под вододействующим и ручными молотами.

    Болванка железа шла в дальнейшую обработку и путем различных кузнечных и прокатных операций превращалась в сортовое железо.

    Сталь применялась чрезвычайно редко, лишь для мелких инструментов и дорогого оружия. Ее изготовляли ремесленными методами, с передачей по наследству «секретов». Существовало три способа изготовления стали: в кричных горнах путем передела особых сортов чугуна; поверхностным науглероживанием железных изделий (цементацией) в специальных печах и плавкою металла в тиглях (литая сталь).

    В медеплавильном производстве применялось последовательно несколько горнов, в которых из руд сначала добывалась неочищенная медь в сплаве и соединении с другими веществами, а затем - чистая медь.

    Металлообработка. Токарное дело. В мануфактурный период изготовление металлических инструментов и деталей механизмов продолжало производиться вручную. Непрерывный рост применения черных, цветных и драгоценных металлов сделал необходимым усовершенствование техники металлообработки. Токарный станок, возникший в свое время как универсальный механизм для выточки изделий из дерева, кости и других материалов, находит все большее применение в области металлообработки.

    Усовершенствование токарных станков с ручным и ножным приводами для вытачивания сложных фигурных изделий, нарезки винтов и т. д. начиная с XVI в. происходит все быстрее.

    На протяжении XVII в. токарный станок подвергался дальнейшим усовершенствованиям во Франции, Германии, Голландии и других странах.

    Текстильное производство. Большой интерес представляет развитие техники текстильного производства, где по сравнению с ремесленным периодом было сделано немало нововведений. Это относится прежде всего к шелковой промышленности. Еще в XIV в. в итальянском шелковом производстве стали распространяться «крутильные мельницы», первоначально с ручным приводом.

    В труде итальянского конструктора Витторио Цонка (начало XVII в.) описываются уже довольно сложные шелкокрутильные вододействующие установки. В начале XVIII в. подобные же машины были освоены в Англии, затем во Франции.

    В XV в. появилась самопрялка (с ручным приводом). Она позволила осуществлять одновременно крутку и намотку нити.

    Крупнейшим изобретением в текстильном производстве явился вязальный станок, сконструированный в 1589 г. английским студентом В. Ли. Эта сложная машина, состоящая из сотни спиц, позволила приступить к производству чулок машинной вязки. Изобретатель, однако, не смог организовать чулочное производство у себя на родине и вынужден был переселиться во Францию, где в начале XVII в. он вместе со своим братом построил первые чулочные мастерские. После этого машинная вязка чулок распространилась и в других странах: в Англии, Голландии, Австрии, Саксонии.

    В течение XVI и XVII вв. произошли значительные изменения в технике красильного дела. Уже в середине XVI в. в Европе начали применять индиго. В 1630 г. был изобретен способ окраски тканей в ярко-красный цвет.

    Появление паровых двигателей. Примерно с последней трети XVII в. в странах с наиболее развитым мануфактурным производством зарождаются элементы новой машинной техники, которым предстоит получить полное развитие в период промышленного переворота. Это относится прежде всего к освоению силы пара.

    Первые проекты использования силы пара для приведения в действие различных механизмов мы можем встретить в работах многих изобретателей XVII в. (Дж. Бранка, С. де Ко, Э. Сомерсета-Вустера и др.)

    В разработке проектов первых паровых машин в конце XVII в. видную роль сыграл Дени Папен. Как показывают новые исследования, идея такой машины могла быть исходно подана Папену ученым X. Гюйгенсом.

    В 1673 г. Гюйгенс представил в Парижскую академию наук проект порохового двигателя в форме цилиндра с поршнем. Порох, взрываясь под поршнем, должен был толкать его вверх. Предполагалось, что после остывания пороховых газов обратное движение поршня будет происходить под действием атмосферного давления. Эксперименты с моделью двигателя проводились два года, но не дали существенных результатов. Проект Гюйгенса интересен в том отношении, что он предвосхищал идею двигателя внутреннего сгорания.

    В 1690 г. Папен предложил паровую поршневую машину, сходную по конструкции с двигателем Гюйгенса. Паровой котел, цилиндр и конденсатор ее были отделены друг от друга (вода и кипятилась, и охлаждалась в рабочем цилиндре). Папен предполагал, что новый двигатель может быть применен не только «к подъему воды или руды из шахт», но и «для множества других подобных вещей». Но ни этот, ни последующие (например, выдвинутый в 1705-1706 гг.) проекты и модели Папена практического применения не получили. Кстати, в своих последних проектах Папен уже учитывал опыт английского инженера Томаса Севери.

    В 1698 г. Севери построил первую практически применимую паровую машину своеобразной конструкции. Изобретатель назвал ее «друг горняка». По мысли изобретателя, машина эта должна была применяться для множества целей: для осушения болот, для откачивания воды из рудников, для снабжения городов и домов водой, для тушения пожаров, для приведения в действие мельничных колес.

    В машине Севери котел был отделен от рабочего сосуда, но работа пара (перегонявшего воду из сосуда вверх по трубе непосредственным давлением на ее поверхность) и его конденсация происходили в одном и том же сосуде. Ни цилиндра, ни поршня в машине не было. В 1715 г. машина Севери была усовершенствована французским физиком Ж.Т. Дезагюльё.

    В 1711-1712 гг. английский изобретатель, кузнечный мастер Томас Ньюкомен построил совместно с Джоном Колли первую паровую (точнее пароатмосферную) поршневую машину. Двигатель Ньюкомена предназначался вначале также лишь для откачки воды.

    Однако даже после усовершенствований, внесенных в конструкцию машины Ньюкомена Бейтоном, Смитоном и, наконец, знаменитым английским, изобретателем Джеймсом Уаттом в 1769-1774 гг., паровая машина Ньюкомена сохраняла свое узкое назначение - для откачки воды.

    Паровые машины не применялись для непосредственного приведения в движение каких-либо заводских или транспортных механизмов, хотя теоретически такая возможность допускалась рядом изобретателей.

    В тех случаях, когда (в середине XVIII в.) делались отдельные попытки использовать силу «огня» (пара) для приведения в действие заводских механизмов (сверлильных станков, воздуходувок и т. д.), паровую машину (системы Севери или Ньюкомена) заставляли подымать воду в резервуар, а затем пускали эту воду на колесо, которое и приводило в движение данный механизм.

    В период XVI - первой пол. XVIII вв. развитие техники происходило во всех сферах производства. Важнейшие изобретения произошли в таких базовых отраслях экономики как металлургия, металлообработка и текстильное производство. Было усовершенствовано использование традиционных сил ветра и воды. Техники и изобретатели вплотную приблизились к созданию универсального двигателя, который мог бы использоваться во всех отраслях промышленности. Всё это послужило предпосылкой к промышленному перевороту. Условия для переворота к XVIII веку созрели в Англии.


    .2 Промышленный переворот


    Термин «промышленный переворот» впервые был введён еще Фридрихом Энгельсом в середине XIX века. Иначе как революция, этот процесс нельзя никак назвать, ведь за короткий период времени (1760-1830) в способе производства произошёл коренной перелом.

    Хотя эта революция имеет все характерные черты взрывного процесса, обусловленного особым сочетанием обстоятельств, определивших место и время его возникновения, она остается в то же время и конечной фазой длительного роста производства, продолжавшегося па протяжении предыдущих семидесяти или более лет. В экономическом отношении переворот этот был, по-видимому, обусловлен постоянным расширением рынка сбыта промышленных товаров, главным образом текстильных, что в свою очередь являлось следствием прежде всего расширения морских путешествий и событий XVII столетия, связанных с колонизацией.

    Сочетание экономических и политических предпосылок, обусловивших радикальный переворот в производстве, было особенно благоприятным в Англии. Скорее именно здесь, а не во Франции мануфактурная промышленность могла свободно развиваться в соответствии со спросом, ибо ограничения, созданные как феодализмом, так и монархией, были сметены революциями XVII века. Другим специфическим для Англии преимуществом явилась, как это ни парадоксально, нехватка леса - этого основного вида топлива, равно как и основного строительного материала всей предшествующей цивилизации. Именно это обстоятельство вызвало расширение использования худшего по качеству, но значительно более дешевого каменного угля в качестве топлива, а позднее и более дорогого, по значительно лучшего материала - чугуна - для построек. В XVIII веке наблюдается быстрый рост производства этих материалов; серьезно улучшаются машины и совершенствуются методы, применяемые в горном деле и металлургии, что было частично обусловлено новым толчком со стороны науки, вызвавшим рост производства, связанный с такими людьми, как Ребук, Блэк, Смитон и Уатт. Так же обстояло дело и со способами транспортировки, в частности с каналами.

    Текстильная промышленность. Первой отраслью промышленности, с которой началась промышленная революция, была текстильная промышленность. Это не случайно, еще в 1733 г. был изобретен летучий челнок для выделки сукна, значительно ускоривший производство тканей. Это изобретение стимулировало работу прядильщиков: в 1738 г. была создана машина, прявшая нить без участия человеческих рук. В 1764 г. Дж. Харгривс изобрел механическую прялку «Дженни», а уже в 1771 г. Р. Аркрайтом была открыта первая прядильная фабрика; машины в ней приводились в движение водяным колесом. К 1780 г. в Англии насчитывалось 20, а через 10 лет - уже 150 подобных фабрик.

    Сравнительно огромная производительность этих машин привела к такому широкому их применению, что возможности небольших ручьев, приводивших в действие станки, были скоро исчерпаны, и в 1785 году был сделан последний логический шаг в механизации текстильной промышленности - использование паровой машины Уатта.

    Паровой двигатель Уатта. Одно дело - изобрести что-нибудь и другое дело - суметь использовать изобретение; в справедливости этого положения нам уже не раз приходилось убеждаться. Что касается паровой машины, то здесь представлялись особые трудности. Ибо, выражаясь кратко, здесь требовалось создать отрасль промышленности с ее персоналом и оборудованием. Чтобы заменить случайных механиков, которыми довольствовались до тех пор, всяких часовщиков, жестяников, строителей мельниц, надо было сформировать кадры рабочих-специалистов, подготовленных к трудной работе, требующей одновременно мускульной силы, смышлености и большой твердости руки. Вместо часто неправильных и плохо прилаженных частей, из которых были сделаны первые машины и которыми объясняется отчасти плохое функционирование их, надо было дать цилиндры правильной геометрической формы; поршни, плотно прилегающие к стенкам, но без чрезмерного трения; зубчатые колеса, такие же правильные, как колеса карманных часов. Успехи металлургии сделали это необходимое преобразование возможным. Но чтобы осуществить его на деле, нужны были еще капиталы, нужна была смелая решимость рискнуть ими в предприятии совершенно новом и с неопределенной будущностью, требовался, наконец, коммерческий талант, от которого зависит практический успех. Такое драгоценное изобретение, как паровая машина, должно было иметь успех; нельзя себе представить, чтобы оно осталось неизвестным или чтобы его игнорировали. Но как мы это видим относительно многих других изобретений, успех легко мог прийти уже после смерти изобретателя.

    В 1765 г. Джеймс Уатт построил паровую машину, а в 1771 г. усовершенствовал ее. Изобретение паровой машины имело громадные последствия для развития фабричного производства. Оно устранило зависимость промышленных предприятий от энергии рек и привело к повсеместному распространению фабрик. Для работы паровой машины требовался уголь; благодаря этому стала усиленно развиваться угольная промышленность. Потребность в металле стимулировала новые способы выплавки железа и привела к усовершенствованию металлургии, которая тоже стала работать на угле, а не на древесине.

    Именно использование паровой машины в качестве источника энергии для текстильной промышленности объединило две вначале изолированно развивавшиеся отрасли - тяжелую и легкую промышленность - и создало тот современный промышленный комплекс, который должен был распространиться из места своего зарождения, Англии, по всему миру.

    Создание универсального парового двигателя имело огромное значение. Началось его повсеместное внедрение во все отрасли промышленности, что послужило началом промышленной революции и переходу от ручного мануфактурного производства к фабричному.

    Промышленный переворот представляет собой очень сложный процесс. Он явился результатом развития и тесного взаимодействия науки и техники. Это результат развития предыдущих трёх веков, когда шло постепенное накопление научных знаний, изобретений и введений новшеств в технике. Это изменение отношения самого человека к прогрессу, ко всему новому. Результатом всего выше изложенного послужил промышленный переворот.


    Глава 3. Влияние развития науки и техники на общество


    Европейское общество на протяжении почти всего периода раннего нового времени было в своей основной массе аграрным с небольшой прослойкой правящей элиты, которая контролировала большую часть собственности (в первую очередь, земельной). Экономическое развитие, т. е. рост производства продовольствия и других товаров, повышающих уровень жизни всего населения (или по крайней мере его части), - все это нуждалось в более интенсивном использовании ресурсов, прежде всего земли, и в более эффективном разделении труда. И то и другое стало неотъемлемой частью европейской истории. Но поскольку предложение земли было ограничено, роль основного фактора развития играло (это понял Адам Смит в XVIII в.) прогрессирующее разделение труда.

    Следовательно, чтобы осмыслить сущность экономического и социального динамизма Европы, нужно отчетливо представлять себе историю европейских производственных элит и профессионализации основной массы населения. Важнейшая составляющая этого динамизма - технические и технологические новации. Ими было богато даже Средневековье; со временем количество этих новаций возросло настолько, что они стали способными к самовоспроизводству, что знаменовало собой так называемую эпоху промышленной революции, или, скорее, целого ряда промышленных революций, которые преобразили буквально каждый аспект физической и социальной жизни и определили самые существенные особенности человеческого мышления и мировосприятия.


    .1 Влияние науки


    Распад средневековой картины мира . Наука как институт сформировалась в европейских странах к XVIII веку, её влияние на общество трудно переоценить. Её развитие и отделение от церкви привело к разрушению средневековой картины мира.

    Средневековые европейцы воспринимали мир как искусное Божье творение, как часть «великой цепи бытия» - и, в силу этого, достойное изучения не меньше, чем теология или философия. Очень часто именно теологи занимались изучением окружающего мира и, прежде всего, астрономией, входившей в круг обязательных университетских дисциплин. Ведь, как учит Библия, Бог создал и землю, и небеса, и все, что на них. Небеса, солнце, луна и звезды во всем их великолепии и совершенстве находятся выше нас, как и сам Бог. Все, что ниже, является земным и подвержено изменению, порче и греху. Однако при этом Земля остается центром мироздания, так как Бог сотворил человека по своему образу (который понимался вполне буквально как образ существа мужского пола), а все прочее - ради человека.

    На этой теологической основе позднее Средневековье без труда приняло аристотелевскую космологию. Согласно Аристотелю, Земля представляет собой сферу в центре Вселенной, расположенную ниже Луны, т. е. подлунную сферу несовершенных материальных тел. Выше находятся концентрические небесные сферы Луны, Солнца и звезд, состоящие из более чистой, неземной материи; они вращаются вокруг Земли. Каждая часть мироздания имеет назначенное ей место, стремится занять его и обрести покой. Это была логически согласованная система устройства Вселенной и действующих в нем законов физики, и, казалось, она соответствовала обычным представлениям и здравому смыслу. Тем не менее аристотелевская система обнаружила ряд фундаментальных погрешностей, которые подверглись критике с нескольких различных позиций.

    Коперник, Галилей и Ньютон постепенно разрушили сложившуюся систему. Была создана новая картина мира, где было объяснено и всё рассчитано. Представление человека о мире изменилось.

    Новая философия. Философы нового времени, среди которых был Декарт (1596-1650), создали новое отношение к миру. Декарт в ходе своих размышлений пришел к следующему выводу: мир представляет собой в чистом виде механизм, управляемый собственными физическими законами и не нуждается более во вмешательстве Бога-творца или иных сверхъестественных существ. Даже животные, не имеющие рационального сознания, согласно Декарту, представляют собой своего рода автоматы. Сам он говорит: «...эти понятия показали мне, что можно достигнуть познаний, очень полезных в жизни, и вместо той умозрительной философии, которую преподают в школах, можно найти практическую философию, при помощи которой, зная силу и действие огня, воды, воздуха, звезд, небес и всех других окружающих нас тел так же отчетливо, как мы знаем различные занятия наших ремесленников, мы могли бы точно таким же способом использовать их для всевозможных применений и тем самым сделаться хозяевами и господами природы. А это желательно не только в интересах изобретения бесконечного количества приспособлений, благодаря которым мы без всякого труда наслаждались бы плодами земли и всеми удобствами, но главное - для сохранения здоровья...»

    Это положило начало новому отношению человека к природе. Он стал по-новому воспринимать природу и мир. Он стал воспринимать себя как хозяина природы.


    .2 Влияние техники


    Основная цель техники - облегчить труд человека. В течение XVI-XVIII веков техника прошла большой путь от ручного мануфактурного производства до фабричного массового производства. В европейских странах создание фабрик привело к образованию нового рабочего класса. Однако не смотря на казавшейся облегчение труда (новые машины позволяли многократно увеличить производство), эксплуатация рабочих была не меньше, чем раньше.

    Новая техника позволила человеку создать промышленный комплекс, который производил массовую продукцию для населения.

    Уровень жизни постепенно рос если не во всех слоях населения, то по крайней мере его части. Благополучие или даже просто жизнь, обеспеченная питанием, одеждой и жильем, пока еще была привилегией меньшинства; однако число обеспеченных людей росло.

    В Англии в конце XVIII века вследствие промышленного переворота начало формироваться первое общество потребления. На сцену выступил крупный и постоянно растущий класс, включавший квалифицированных ремесленников и состоятельных фермеров, зажиточных лавочников и преуспевающих коммерсантов, местное духовенство, сельских юристов и врачей. Все они располагали теми или иными средствами сверх обычного потребительского уровня. Естественно, их потребности были обеспечены встречным предложением, и все больше стимулировались теми, кто предлагал различные предметы роскоши и развлечения. Витрины магазинов становились все более разнообразными и модными по мере того, как дешевые ткани позволяли подражать модам высших классов общества.

    Всё это свидетельствует о развитии производства в этой стране, ведь Англия - это страна первого промышленного переворота.

    Влияние техники и промышленного переворота трудно переоценить, был внесён коренной перелом в саму структуру общества. В Англии стремительно росло городское население, новые центры фабричного производства. Количество занятых в промышленности тоже постоянно росло.


    Заключение


    Изучив в первой главе развитие науки в раннее новое время, мы видим что наука прошла большой путь. На первом этапе научной революции (кон. XV - 1540 г.) наука начала путь к разрушению средневековой картины мира. Здесь трудно переоценить влияние Николая Коперника, который выдвинул свою теорию вращения планет вокруг Солнца.

    На втором этапе (1540-1650) научной революции произошел триумф нового метода научного познания - экспериментального. Пионером нового метода был Галилео Галилей, который в своих исследования использовал именно метод эксперимента. Также он первый вычислил и подтвердил теорию Коперника. Была выдвинута теория кровообращения, происходило развитие анатомии.

    Третий этап (1650-1700) был торжеством новой науки. Были образованы первые научные общества в Англии и Франции. Важнейшим открытием периода было открытие всемирного тяготения Исааком Ньютоном. Произошла окончательная ломка средневековой картины мира.

    Во второй главе было раскрыто развитие техники в раннее новое время и промышленный переворот. Развитие техники было следствием развития науки, шло усовершенствование техники средневековья (мельница, водяное колесо). Также менялась техника производства от мануфактурного способа к фабричному. Промышленный переворот стал следствием развития техники и науки, он выражался в замене ручного труда машинным.

    Влияние развития науки и техники на общество было огромным. Рос уровень и качество жизни. Росло население городов, как новых центров промышленного производства. В Англии это начало приводить к обществу потребления.


    Список литературы


    1.Кёнигсбергер Г.Г.Европа раннего Нового времени, 1500-1789 / Пер. с англ. Послесловие Д.Э. Харитоновича. - М.: Издательство «Весь Мир», 2006. - 320 с.

    2.Виргинский В.С. Очерки истории науки и техники XVI-XIX веков - Москва: Просвещение, 1984. - 287 с.

    3.Ф. Илек. Мировые изобретения в датах: Хронологический обзор знаменательных событий из истории изобретений в области техники. / Пер. с чешского с дополнениями Г.В. Матвеевой; Под ред. Д.А. Соболева. - Узбекистан, 1982. - 271 с.

    .Джон Бернал. Наука в истории общества - Москва: Издательство иностранной литературы, 1956. - 738 с.

    5.Большая советская энциклопедия в 30 томах (#"justify">.Всемирная история. Энциклопедия (#"justify">.Зворыкин А.А., Осьмова Н.И., Чернышев В.И., Шухардин С.В. История техники - Москва: Соцекгиз, 1962 - 772 с.

    .Манту П. Промышленная революция XVIII столетия в Англии - Москва: государственное социально-экономическое издательство, 1937 - 440 с.

    .Юровская Е.Е., Кривогуз И.М. Новая история стран Европы и Америки. Том 1 - М.: Высш. шк., 1998. - 415 с.


    Репетиторство

    Нужна помощь по изучению какой-либы темы?

    Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
    Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.